
PROBLEME 1

Dans ce problème, K désigne R ou C.

Partie I : Préliminaires

1. Résoudre dans C l’équation z2 − 2z + 2 = 0. On notera α et β les deux racines de cette
équation.

2. Soit p un entier naturel supérieur ou égal à 2. Soit M une matrice carrée d’ordre p à
coefficients dans K.
Soit λ une valeur propre de M . Montrer que s’il existe trois éléments a, b, c de K tels que

aM2 + bM + cIp = 0

où Ip désigne la matrice de l’identité de Kp,
alors λ vérifie aλ2 + bλ + c = 0.



Partie II

On note E le K-espace vectoriel K2n où n est un entier naturel non nul.
On note B = (e1, ..., en, e′1, ..., e

′
n) la base canonique de E.

Soit ϕ l’endomorphisme de E défini par :

∀k ∈ [[1, n]]

{
ϕ(ek) = ek − e′k
ϕ(e′k) = ek + e′k

On appelle A2n la matrice de ϕ dans la base B.
A2n est donc une matrice carrée d’ordre 2n.

1. Dans cette question et cette question seulement, on suppose n = 1.
Ecrire A2. A2 est-elle diagonalisable si K = R ? si K = C ?

2. Calculer A2
2n et montrer que A2

2n = 2A2n − 2I2n où I2n est la matrice de l’application
identique IdE de E.

3. Que peut-on dire des valeurs propres de A2n ?
Si K = R, A2n est-elle diagonalisable ?

Dorénavant, K = C.

4. Justifier que ϕ ◦ ϕ = 2ϕ− 2IdE .
Montrer que

Ker(ϕ− αIdE) et Ker(ϕ− βIdE)

sont des sous-espaces vectoriels supplémentaires de E.
En déduire que A2n est diagonalisable.

5. Déterminer une base de vecteurs propres de A2n.

(On pourra noter X =




x1
...

xn

x′1
...

x′n




un élément de M2n,1(C))
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PROBLEME 2

Notations :

Pour k et n entiers naturels tels que 0 6 k 6 n, on notera indifféremment Ck
n =

(
n
k

)
le coefficient

binomial :
n!

k!(n− k)!

Dans ce problème, (Ω,A,P) désigne un espace probabilisé et les variables aléatoires utilisées sont
définies sur cet espace probabilisé.

Résultats admis :

(1) Formule de Stirling : n! ∼ e−nnn
√

2πn quand n tend vers +∞
(2) Equivalent des sommes partielles pour des séries divergentes :
Soit (an)n>1 et (bn)n>1 deux suites positives. Si an ∼

n→+∞
bn et si la série de terme général bn

diverge, alors la série de terme général an diverge et
n∑

k=1

ak ∼
n→+∞

n∑

k=1

bk

Partie I : Préliminaires

Dans tout le problème, on note pour tout entier naturel n,

un = Cn
2n =

(
2n
n

)

1. En utilisant la formule de Stirling, déterminer un réel C strictement positif tel que

un ∼
n→+∞

C
4n

√
n

2. Montrer que pour tout entier naturel n,

un 6 22n

Partie II : Déplacement aléatoire d’une puce

Une puce se déplace sur un axe gradué. Elle part de la position 0 et à chaque instant i entier
naturel non nul, elle se déplace d’un pas de longueur 1 au hasard vers la droite ou vers la gauche.
On définit la variable aléatoire Xi pour tout i entier naturel non nul, par{

Xi = 1 si elle se déplace vers la droite
Xi = −1 si elle se déplace vers la gauche

Ainsi (Xi)i>1 est une suite de variables aléatoires de même loi donnée pour tout entier naturel i
non nul par

P(Xi = 1) = P(Xi = −1) =
1
2

Dans cette partie, on suppose que les Xi sont indépendantes.
Pour tout entier naturel n, on note Sn la variable aléatoire représentant la position de la puce au
bout de n déplacements. On aura alors S0 = 0 et pour tout entier naturel n strictement positif

Sn =
n∑

i=1

Xi

1. Donner la loi de S1 et son espérance E(S1).
Donner la loi de S2 et son espérance E(S2).
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2. Montrer que, pour tout n > 1,

S2n + 2n

2
=

2n∑

i=1

(
Xi + 1

2

)

et donner la loi de la variable aléatoire
2n∑

i=1

(
Xi + 1

2

)
.

3. En déduire que pour tout entier n strictement positif,

P(S2n = 0) =
(

1
2

)2n

un

Dorénavant, pour tout entier naturel i non nul, on considère la variable aléatoire Zi définie
par {

Zi = 1 si S2i = 0
Zi = 0 sinon

Puis on souhaite étudier le comportement, lorsque n tend vers +∞, de l’espérance E(Yn)
de la variable aléatoire

Yn =
n∑

i=1

Zi

4. Que représente pour la puce la valeur de la variable aléatoire Yn ?

5. En utilisant le résultat admis (2), montrer que

E(Yn) ∼
n→+∞

n∑

k=1

1√
kπ

En utilisant une méthode de comparaison entre série et intégrale, montrer que
n∑

k=1

1√
k

∼
n→+∞

2
√

n

En déduire un équivalent de E(Yn) lorsque n tend vers +∞.

Partie III : Autre méthode de déplacement d’une puce

A Résultats d’analyse

1. Montrer que, pour tout x élément de l’intervalle [0, 1[ et tout entier naturel n ,

1√
1− x

=
n∑

k=0

uk

4k
xk + (n + 1)

∫ x

0

(
x− t

1− t

)n
un+1

4n+1

dt

(1− t)3/2

On pourra raisonner par récurrence sur n.

2. Montrer que, si t et x sont des réels 0 6 t 6 x < 1, alors

0 6 x− t

1− t
6 x

3. En utilisant les préliminaires, montrer que, pour tout x élément de l’intervalle [0, 1[,

0 6 (n + 1)
∫ x

0

(
x− t

1− t

)n
un+1

4n+1

dt

(1− t)3/2
6 (n + 1)xn

∫ x

0

(1− t)−3/2 dt

En déduire que, pour tout x élément de l’intervalle [0, 1[,

lim
n→+∞

(n + 1)
∫ x

0

(
x− t

1− t

)n
un+1

4n+1

dt

(1− t)3/2
= 0
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4. Déduire de ce qui précède que, pour tout x élément de l’intervalle
[
0,

1
4

[
,

1√
1− 4x

=
+∞∑

k=0

ukxk (R1)

On pose, pour tout entier naturel n,

vn =
n∑

k=0

ukun−k

5. Pour tout entier naturel n, on définit les sous-ensembles Kn et Ln de N2 par
Kn = {(j, k) ∈ N2/0 6 j 6 n et 0 6 k 6 n} et Ln = {(j, k) ∈ N2/j + k 6 n}

Montrer que
Ln ⊂ Kn ⊂ L2n

6. Soit x élément de l’intervalle
[
0,

1
4

[
. Montrer que pour tout entier naturel n,

n∑

i=0

vix
i 6




n∑

j=0

ujx
j




(
n∑

k=0

ukxk

)
6

2n∑

i=0

vix
i

7. Déduire de ce qui précède que, pour tout x élément de l’intervalle
[
0,

1
4

[
, la série de terme

général vnxn converge et que
+∞∑
n=0

vnxn =
1

1− 4x
(R2)

B Application au déplacement aléatoire de la puce

Soit N un entier naturel fixé non nul. On extrait au hasard une partie A de cardinal N de
l’ensemble {1, 2, ..., 2N}. Pour tout i élément de {1, 2, ..., 2N}, on considère la variable aléatoire
X ′

i définie par {
X ′

i = 1 si i ∈ A

X ′
i = −1 si i /∈ A

On note S′0 = 0 et pour tout i élément de {1, 2, ..., 2N},

S′n =
n∑

i=1

X ′
i

On peut considérer à nouveau pour tout entier naturel n, S′n comme la position d’une puce au
bout de n déplacements dictés par la partie A tirée au sort.

1. On considère, dans cette question seulement, que N = 3. On suppose que l’on a tiré au sort
la partie A = {1, 2, 5}.
Donner, pour tout i élément de {1, ..., 6}, les valeurs de X ′

i et de S′i .
2. Que vaut S′2N ?
3. Montrer que, pour tout i élément de {1, 2, ..., 2N},

P(X ′
i = 1) = P(X ′

i = −1) =
1
2

4. On suppose que les variables (X ′
i)i∈{1,2,...,2N} sont mutuellement indépendantes.

Calculer la variance V(S′2N ) de S′2N .
Trouver une contradiction et conclure.
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Dorénavant, pour tout i élément de {1, 2, ..., N}, on considère la variable aléatoire Z ′i définie
par {

Z ′i = 1 si S′2i = 0
Z ′i = 0 sinon

Puis on souhaite étudier le comportement, lorsque n tend vers +∞, de l’espérance E(Y ′
n)

de la variable aléatoire

Y ′
n =

n∑

i=1

Z ′i

5. Montrer que
E(Y ′

N ) =
vN

uN

où vN est défini au III.A.

6. A l’aide du cours sur les séries, écrire
1

1− 4x
=

+∞∑

k=0

εkxk pour tout x ∈
[
0,

1
4

[
.

7. On admettra que (R2) implique vN = εN .
En déduire un équivalent de E(Y ′

N ) lorsque N tend vers +∞.
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