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Les candidats sont invités & encadrer dans la mesure du paossible les résultats de leurs calculs.
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Si au cours de 'épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il la s:;gm{em sur sa
copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené & prendre.

- Notations et rappels -

o Toutes les variables aléatoires sont définies sur le méme espace probabilisé (52, A, P).
¢ S5i Z est une variable aléatoire réelle, on note E(Z) son espérance et V(Z) sa variance, si elles existent.
e On note y et ® les fonctions définies pour tout = € R par :

oo) = =ew(-3) , #@)= [ et

e On rappelle que la fonction Gamma est définie pour tout réel = > 0 par :

+00
I{z) = f =-letqs
0

et vérifie, pour tout réel z > 0, I'(z + 1) = zT'().
e Pour les programmes Python, on dispose d’un petit formulaire a la fin du sujet. On importe aussi les
bibliothéques suivantes :

import numpy as np
impert matplotlib.pyplet ae pit
import numpy.random as rd

o Le mot FIN marque la fin de Pénoncé.
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Premiére partie

Soit (Xi);en~ une famille de variables aléatoires mutuellement indépendantes, chacune de loi normale NV(0,1).
) 3 n
On suppose que X;(w) # 0 pour tout i € N* et tout w € Q2. On définit, pour tout entier n € N*, §;, = ZX?.
i=1
La loi de S, est appelée loi du khi-deux éi n degrés de liberté, et on notera S, < x*(n).
On pose aussi, pour tout entier n € N*, W,, = -2-8,,

1. (a) Montrer que pour tout n € N*, S, admet une espérance et calculer E(S,). On admet que E(52)
existe pour tout n € N*,
(b) Ecrire une fonction Python simul(n) qui renvoie une réalisation de Sy, lorsqu’on lui fournit un entier
naturel non nul n en entrée. -
{¢) On exécute ensuite le programme suivant :

daf f{n, N):

o= 0 ; .
for k in range(N): | ' | *
t =t + simnl{n)*s2 E4 _ et
return t/H - n¥*2 *
15.0 . oy o — ] L i il
A = np.arange(1,10) o R, TET T S §
B = np.zeros{9) y '
for a im At wod i i +
Bin-1] = #(=n, 50000) ' :
plt.plot (A, B, “"*k") 154 S
plt.grid () ' Pk !
e 0L L S e o
On obtient la figure ci-contre. 251 «
Que peut-on conjecturer sur la variable - A % e % 8 8
aléatoire S, 7

Expliquer ce qui motive votre conjecture.
2. (a) Montrer que W; est une variable aléatoire & densité et déterminer une densité de W;.
(b) En déduire la valeur de r(%)

{(¢c) En déduire que pour tout n € N*, W, suit la loi gamma 7(%) :

(d) Retrouver alors la valeur de E(S,) et déterminer la valeur de V(8S,).
3. (a) Montrer que, pour tout entier n, n > 3, _Filf— admet une espéranee et que
"

() -

i
En déduire que E(S’ﬂ) s mf

{b) Déduire de la question précédente que, pour tout entier n, n > 3, «—«% admet une espérance.
i

Soit ¥ une variable aléatoire indépendante des (X3),..; et de loi A(0,1). Pour tout n > 1, on pose :
Y

VSaln
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' La loi de T}, est appelée loi de STUDENT de paramétre n et on note 7), < T{n).
On admet que T}, est une variable aléatoire & densité possédant une densité strictexnent positive et continue sur
R. 4

4. Soit a €]0, 1[. Montrer I'existence et 'unicité d’un réel £, , tel que P(|T),| < tho) =1 —a.
5. (a) Montrer que, pour tout n entier, n > 3, E(7;,) existe et vaut 0 .

(b) Montrer que, pour tout n entier, n > 3, V(T},) existe et vaut ni S
2n -2 1
; ’ i 2
{c) En déduire que, pour tout n entier, n > 3, E((Tn -Y) ) e S v2n B V'W:)

6. Pﬁurtontnenﬁier,n?Z,onpase:m,:E( : )

VW

(a) Montrer que la suite (un)n>2 est décroissante et déterminer la valeur de us.

(b) Montrer que, pour tout entier n, n > 2, on a8 Upy1.uy = ;;—2—1.

(c) Ecrire une fonction Python d’entéte suite_u(n) qui renvoie sous la forme d'un tableau nompy les
n— 1 valeurs 4o, ug, ..., 4.

(d) On exécute ensuite le programme suivant :

U = suite_u({80)

¥ = np.arange(2,81)
pli.plot (V, Vil , * k")
plt.grid ()

plt.show ()

On obtient la figure suivante : .

Que peut-on conjecturer concernant la suite (uy, ),z ?
2
(e) Montrer que B o \/;.
7. Montrer que la suite (7},),>2 converge en probabilité vers Y.
Deuxiéme partie

Dans cette partie, on démontre le résultat suivant :

Théoréme : Soient X, ¥ deux variables aléatoires indépendantes, chacune de loi normale A {0,1). Les

variables aléatoirves X';;f et X‘;EY sont alors indépendantes et de loi normale N'(0, 1).

Pour la preuve, on fera appel au résultat suivant qu'on utilisera sans preuve :
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Théoréme : Soient X,Y deux variables aléatoires indépendantes, de densités respectives f et g. Soit
A € R? yne. part:e fermée. Alors : )

e ed= [ ([ 1uwnses) o,

oit 1 4{z,y) vaut 1 si (z,y) € A et vaut 0 sinon.
Soient a,b € R fixés jusqu’a la fin de cette partie. On considére la partie A ¢ R? définie par :
A={(z,y)eR?|z+y<a e 2z—-y<b}

Onposeégalementc-a;b d“a b

2
Soient X et ¥ deux variables aléatoires indépendantes, chacune de loi normale N {0,1).

X+Y X-Y
Onpose W= et & = —nr
V2 V2
8. Dessiner la partie A dans lecasolia =2, b= —1.
9. Soit y un réel tel que y > d.

(a) Montrer que (z,y) € A si et seulement si z € | — 00,4 — yl.
(b) En déduire que

f; § La(e, y)ple)de = B(a —y).

10. Montrer de la méme fagon que pour tout y < don a

Fo0
L > La(z, y)pla)de = (b +y).

11. (a) Montrer que A est une partie fermée de R®.
(b} Montrer que

400
P((X,Y) € A) = £ (p(d+2) +p(d — 2) &(c — 2)d=.
12. Montrer que :

PX,Y)e A) = f ( (pld+ 2) + p(d— 2)) ot — z)dt) dz.

On admet pour la suite que 'on peut changer ordre d’intégration dans la formule précédente, ¢’est-a-dire
que 'on a :

P((X,Y) € A) = /;; (L’m {old+2) +o(d—2)) ot — z)dz) dt

13. Montrer que pour tous u,v réels on a : plu)p(v) = @(u;‘%v) cp(u\;;).

14. Montrer que :
w5 [ (o0 (5) () ()=

15. Montrer que :
P((X,Y) € A) = & (‘;j;) ® (";;) .

16. Conclure quant & Pobjectif de cette partie.
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Troisiéme partie

Soit n € N tel que n > 2. On munit Pespace vectoriel R” du produit scalaire euclidien standard que I'on notera

T i3
~ {+)- On considére une base orthonormée (a1,...,a,) de R telle que a; = 71:5(1,M. P

T1+- 42

17. Soit z = (1,...,2,) € R*. On pose & = =

(3) Montrer que ! Z(z}ak)ak == {3:1 = TyereyBy __:5) ?

k=2
£ § 2
(b) En déduire que : ) (z,a1)* = > (2; —5).
k=2 o |

Soient Xj,..., X, des variables aléatoires mutuellement indépendantes, chacune de loi nermale N(0,1). On
pose X = (Xj,---,X,). Pour k € [L,n}], on note (X,a;) la variable aléatoire ¥; définie pour tout w €
par Yi(w) = (X(w), ax). Quitte & modifier les ¥}, sur un ensemble de probabilité nulle, on peut supposer que

Yie(w) # 0 pour tout w € 0 et tout &k € [1,n].

Dans le reste du probléme on utilisera sans preuve le théoréme de COCHRAN :

Théoréme : Les variables aléatoires Y3,..., Y, sont mutuellement indépendantes, chacune de loi normale

N(0,1).

18. (a) Retrouver le résultat de la deuxidme partie 4 Paide du théordme de COCHRAN.

(b) Soit (B1,5,) € R? — {(0,0)}. Montrer que les variables aléatoires Ry = X; + X3 et Ry = B Xy + foXo

sont indépendantes si et seulement si Cov(R;, Rp) = 0.

19. On introduit les variables aléatoires : '
- X1+ + X, = = =
X_——TM,U—g(Xg X).
(#) Donner la loi de X.
(b) Exprimer X et U & I'nide des variables aléatoires Yy, k € [1,7].
(c) Montrer que X et U sont indépendantes et que U suit la loi X’(n—1).

On suppose pour la fin de ce probléme que Z = (Z;,.. ., Z,) est un n-uplet de variables aléatoires mutuellement
indépendantes, chacune de loi normale N'(, o) avec o > 0 out (1, 0%) est inconnue. On pose :

‘“’Z'f"mzl_*_”'-l"z“
ki3

V= i(Z§‘“‘E2<

=1

Comme précédemment, on pourra supposer que V{w) # 0 pour tout w € €.

n
20. (a) Pour i € [1,n], on pose X; = z‘a E On pose de plus X = w et U = Z(Xi - X%
jr ]
Exprimer V en fonction de U et 0. =
{b) En déduire que ;%—-i&V est un estimateur sans biais de ¢?,

{c) Montrer que

2 _f suit la loi de STUDENT T(R — 1).
a{n—1)
21. Soit o €]0,1] et tn-1,q le réel tel que P(IT] < tn-14) = 1 — @ lorsque T —+ T(n — 1). Construire, en
fonction de Z, V, n et £y1 4, un intervalle de confiance de p au niveau de confiance 1 — .
Dans la pratique, les valeurs t,_; o sont tabulées ef permetient ainsi la eonstruction d'intervalles de
confiance non asymplotigues pour des modéles gaussiens.
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Aide-mémoire PYTHON - Mathématiques Approfondies

L Matl;ématiqm générales
imﬁart’n,@%ﬁw“og& w“z = il

By .

np.pi Renvoie une valeur approchée de .

np.linspace{a, b, n) Crée une matrice ligne de n valeurs unifor-
mément réparties entre a et b (inclus).

np.zeros {{n,an]) Crée la matrice nulle de taille n x m.

np.zeres(n) Crée la matrice ligne nulle de taille n.

np.arange(a,b,aps) Renvoie la liste des flottants de a & b (non
compris) de pas constant eps.

shape (M) Donne la taille de la matrice M sous forme

d’un tuple (couple).

I1. Simulations probabilistes

import numpy.random as rd

rd.exponential (a, [q,r])
rd.axponential (a, n)

Simule une réalisation d’une matrice (resp

d’un vecteur) aléatoire de dimension (g,7)
(resp n) dont les coefficients sont des va-
riables aléatoires indépendantes qui suivent

Is loi g(é).

.
s

normal (m,d, [g.z])
normal (m,d,n)

Simule une réalisation d’une matrice (resp
d’un vecteur) aléatoire de dimension (g,7)
(resp n) dont les coefficients sont des va-
riables aléatoires indépendantes qui suivent
Ia loi AV (m,d?)

rd.
rd.

ganma(m,a, g, r])
gamma {m,a,n)

Simule une réalisation d'une matrice (resp
d’un vecteur) aléatoire de dimension {g,r)
(resp n) dont les coefficients sont des va-

riables aléatoires indépendantes qui suivent
la loi T (m, a).

I11. Graphigues

import matpic

4 1ib. pyplot as pit

plt.plot(X,Y,options)

Génere la courbe des points définis par les
listes X et Y suivant les options graphiques
définies par la chaine de caractére options.

plt.grid()

Affiche le quadrillage

pit . show ()

Affiche le graphique.

FIN
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