EXERCICE 1

On note \mathcal{BC} la base canonique de \mathbb{R}^3 et on définit les matrices :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ , \quad N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ , \quad P_y = \begin{pmatrix} 0 & 2 & 1 \\ 4 & 0 & y \\ 4 & 2 & 0 \end{pmatrix} \ , \quad A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{pmatrix}.$$

On note f l'endomorphisme de \mathbb{R}^3 de matrice A dans la base canonique \mathcal{BC} . On note id l'endomorphisme de \mathbb{R}^3 de matrice I dans la base canonique \mathcal{BC} .

- 1. (a) Calculer $(A 2I)^2$ puis vérifier que $(A 2I)^3 = O_3$ (matrice nulle de $\mathcal{M}_3(\mathbb{R})$).
 - (b) En déduire que le réel 2 est l'unique valeur propre de A et déterminer une base et la dimension du sous-espace propre de A associé à la valeur propre 2.
- 2. Montrer par une méthode du pivot que P_y est inversible si et seulement si $y \neq -1$.
- 3. On note dans toute la suite les vecteurs : $u_1 = (0,4,4)$ et $u_2 = (2,0,2)$.
 - (a) Déterminer l'unique vecteur u_3 de la forme $u_3 = (1, y, 0)$ tel que : $f(u_3) = u_2 + 2u_3$.
 - (b) Donner la matrice de passage P de la base \mathcal{BC} à la famille $\mathcal{B}' = (u_1, u_2, u_3)$. Montrer à l'aide de la question 2 que P est inversible puis justifier que la famille \mathcal{B}' est une base de \mathbb{R}^3 .
 - (c) Exprimer $f(u_1)$ en fonction de u_1 , puis $f(u_2)$ en fonction de u_1 et u_2 . En déduire que la matrice T de l'endomorphisme f dans la base \mathcal{B}' est T = 2I + N. Donner, en la justifiant en une seule ligne, la relation liant les matrices A, T, P et P^{-1} .

On cherche maintenant à déterminer l'ensemble S des endomorphismes h de \mathbb{R}^3 vérifiant la relation [R]:

$$[\mathbf{R}] : f \circ h = h \circ f$$

- 4. (a) On note M' la matrice de l'endomorphisme h relativement à la base \mathcal{B}' .

 Montrer que : $[R] \Leftrightarrow (NM' = M'N)$.
 - (b) En posant $M' = \begin{pmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{pmatrix}$, montrer que : [R] $\Leftrightarrow M' = \begin{pmatrix} a & a' & a'' \\ 0 & a & a' \\ 0 & 0 & a \end{pmatrix}$.
 - (c) Calculer la matrice N^2 et en déduire que $S = Vect (id, f 2id, (f 2id)^2)$.
 - (d) On note $G = (I, N, N^2)$. Montrer que G est libre et en déduire la dimension de S. On note $G' = (id, f, f^2)$. Montrer que G' est une base de S.

EXERCICE 2

Soit n un entier naturel non nul. On considère dans cet exercice une variable aléatoire X_n qui suit la loi normale de paramètres m = 0 et $\sigma^2 = \frac{1}{n}$. (loi $\mathcal{N}(0, \frac{1}{n})$).

- Justifier que la fonction f_n définie sur IR par $f_n(t) = \sqrt{\frac{n}{2\pi}} e^{-\left(\frac{n}{2}t^2\right)}$ est une densité de X_n . 1.
 - Justifier que f_n est paire.
 - Dans cette question uniquement on considère que n=4, et on donne $\sqrt{\frac{2}{\pi}}\approx 0.8$. Représenter l'allure de la courbe représentative de f_4 dans un repère orthonormé et situer les points d'inflexion de cette courbe en donnant leur abscisse (leur ordonnée vaut environ 0,5).
 - Justifier graphiquement l'égalité : $P(X_n \le 0) = P(X_n \ge 0) = \frac{1}{2}$. (d)

On note Φ la fonction de répartition de la loi normale centrée réduite, définie sur \mathbb{R} par la relation :

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$$
.

On donne en outre la valeur approchée $\Phi(1) \approx 0.8$.

- Justifier que $\Phi(0) = \frac{1}{2}$ puis montrer que pour tout $x \in \mathbb{R}$, $\Phi(x) = \frac{1}{2} + \int_0^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$. 2.
 - (b) En déduire que Φ est de classe C^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $\Phi'(x) = f_1(x)$. (c) Justifier que la variable $\sqrt{n} X_n$ suit la loi normale centrée réduite.

Endéduire:
$$P(0 \le X_n \le \frac{1}{\sqrt{n}}) \approx 0.3$$
.

On note dans toute la suite H la fonction définie sur \mathbb{R} par $\begin{cases} H(x) = e^{-\frac{1}{x}} \Phi(x) & \text{si } x \neq 0 \\ H(0) = 0 \end{cases}$

- Etablir les résultats suivants : 3. (a) $\lim_{x \to 0} H(x) = 0 , \lim_{x \to 0} H(x) = +\infty , \lim_{x \to +\infty} H(x) = 1 , \lim_{x \to -\infty} H(x) = 0 .$
 - Justifier que H est de classe C^1 sur IR* et que H est continue à droite en 0. (b)
 - Montrer que pour tout réel x > 0, $H'(x) = \frac{1}{x^2} e^{-\frac{1}{x}} \Phi(x) + \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{x} \frac{1}{2}x^2}$. (c) Justifier $\lim_{x\to 0} \frac{1}{x^2} e^{-\frac{1}{x}} = 0$.

En déduire que H est dérivable à droite en 0 et que $H_d^+(0) = 0$.

Etudier les variations de H et tracer l'allure de la courbe de H dans un repère orthonormé . (d) (On fera apparaître les caractéristiques étudiées, et on utilisera $H(1) \approx 0.3$)

EXERCICE 3

Les parties A et B sont indépendantes.

Un joueur A dispose d'une pièce qui a la propriété de faire PILE avec la probabilité $\frac{1}{3}$.

Un joueur B dispose d'une pièce qui a la propriété de faire PILE avec la probabilité $p \in]0;1[$. Les résultats des lancers de ces pièces seront toujours supposés indépendants.

PARTIE A

Dans cette partie on effectue le jeu suivant :

Les joueurs A et B lancent leur pièce simultanément jusqu'à ce qu'au moins une des deux pièces donne PILE . Si A et B font PILE simultanément, le jeu s'arrête sans que personne n'ait gagné d'argent . Sinon, le premier à obtenir PILE s'arrête et l'autre continue ses lancers jusqu'à obtenir PILE également et paye un euro à son adversaire à chacun des lancers de cette série " en solitaire " .

Par exemple si A a obtenu PILE pour la première fois à son 7° lancer et si B a obtenu PILE pour la première fois à son 11° lancer, c'est B qui doit payer à A la somme de 4 euros.

On note X la variable aléatoire réelle égale au nombre de lancers effectués par le joueur A, Y la variable aléatoire réelle égale au nombre de lancers effectués par le joueur B et Z = Y - X.

- 1. Justifier que les variables X et Y suivent des lois géométriques dont on donnera le paramètre . Préciser $X(\Omega)$, $Y(\Omega)$ et les valeurs de P(X=k), P(Y=k), E(X), E(Y), V(X), V(Y).
- 2. (a) Montrer que $E(Z) = \frac{1-3p}{p}$ et $V(Z) = \frac{6p^2 p + 1}{p^2}$.
 - (b) Montrer que $\sum_{k=1}^{+\infty} P(X=k)P(Y=k) = \frac{p}{1+2p}$ et en déduire P(Z=0).
 - (c) Soit $n \in \mathbb{N}^*$. Montrer que $P(Z = n) = \frac{p}{1+2p} (1-p)^n$ et en déduire P(Z > 0). En déduire P(Z < 0) puis interpréter les événements (Z = 0), (Z > 0), (Z < 0).

PARTIE B

On veut d'abord programmer en Turbo-Pascal le lancer simultané des deux pièces par les joueurs A et B.

1. En utilisant la fonction random, recopier et compléter la fonction suivante pour qu'elle simule ce lancer simultané et renvoie 0 si les résultats de A et B sont identiques et 1 s'ils sont différents.

```
function lancer (p:real): integer;

yar A, B; char;

jegin

if ( ) then A:='P' else A:='F';

if ( ) then B:='P' else B:='F';

if ( ) then lancer:= 0 else lancer:= 1/;

end;
```

2. Montrer que la probabilité que les lancers de A et B soient différents est $\frac{1+p}{3}$.

On procède alors au jeu suivant : (N est un entier naturel fixé non nul). Les joueurs A et B lancent leur pièce simultanément N fois de suite .

Le joueur B paye un euro à A à chaque fois que les pièces n'affichent pas le même résultat.

On note H_N la variable aléatoire égale à la somme payée par le joueur B au joueur A.

- 3. Justifier que H_N suit une loi classique que l'on détaillera .
- 4. Montrer que $\left(\frac{3H_N}{N}-1\right)$ est un estimateur sans biais du réel p et déterminer son risque quadratique .