

Code épreuve :

295

Concepteur : EMLYON Business School

1ère épreuve (option scientifique)

MATHÉMATIQUES

Lundi 2 mai 2011 de 8 heures à 12 heures

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

Partie I : Somme de variables aléatoires suivant la loi exponentielle de paramètre 1

1. Rappeler une densité, l'espérance et la variance d'une variable aléatoire suivant la loi exponentielle de paramètre égal à 1.

On considère une suite de variables aléatoires réelles $(X_k)_{k\in\mathbb{N}^*}$ mutuellement indépendantes, qui suivent la loi exponentielle de paramètre égal à 1.

Pour tout $n \in \mathbb{N}^*$, on note S_n la variable aléatoire définie par $S_n = \sum_{k=1}^n X_k$.

- **2.** a. Pour tout $n \in \mathbb{N}^*$, donner l'espérance et la variance de la variable aléatoire S_n .
 - **b.** Pour tout $n \in \mathbb{N}^*$, rappeler une densité de S_n .
- 3. Soit une variable aléatoire U suivant la loi uniforme sur l'intervalle [0;1]. Montrer que la variable aléatoire $Y = -\ln(1-U)$ suit une loi exponentielle dont on déterminera le paramètre.
- 4. Écrire un programme PASCAL, utilisant le générateur aléatoire PASCAL, simulant la variable aléatoire S_n , l'entier n étant entré par l'utilisateur.
- 5. Pour tout $t \in]0$; $+\infty[$, on note N_t la variable aléatoire égale à 0 si l'événement $(S_1 > t)$ est réalisé, et, sinon, au plus grand entier $n \in \mathbb{N}^*$ tel que l'événement $(S_n \leq t)$ est réalisé.

Ainsi, pour tout $t \in]0; +\infty[$, pour tout $n \in \mathbb{N}^*$, l'événement $(N_t = n)$ est égal à l'événement $(S_n \leq t) \cap (S_{n+1} > t)$.

Écrire un programme PASCAL, utilisant le générateur aléatoire PASCAL, simulant la variable aléatoire N_t , le réel t étant entré par l'utilisateur.

Partie II: Polynômes de Laguerre

On considère, pour tout $n \in \mathbb{N}$, les applications

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{x^n e^{-x}}{n!},$$

$$L_n: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto e^x f_n^{(n)}(x),$$

où $f_n^{(n)}$ désigne la dérivée n-ième de f_n .

- **6.** Calculer, pour tout $x \in \mathbb{R}$, $L_0(x)$, $L_1(x)$, $L_2(x)$.
- 7. Montrer:

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ L_n(x) = \sum_{k=0}^n \frac{(-1)^k}{k!} \binom{n}{k} x^k.$$

- 8. En déduire que, pour tout $n \in \mathbb{N}$, L_n est une fonction polynomiale dont on précisera le degré et le coefficient du terme de plus haut degré.
- 9. Montrer:

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f'_{n+1}(x) = f_n(x) - f_{n+1}(x).$$

10. En déduire :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ L'_{n+1}(x) = L'_n(x) - L_n(x).$$

11. Montrer:

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f_{n+1}(x) = \frac{x}{n+1} f_n(x).$$

12. En déduire :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ (n+1)L_{n+1}(x) = xL'_n(x) + (n+1-x)L_n(x).$$

13. Établir:

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ xL_n''(x) - (x-1)L_n'(x) + nL_n(x) = 0.$$

Partie III: Produit scalaire, orthogonalité, endomorphisme

On note E le \mathbb{R} -espace vectoriel des applications polynomiales de \mathbb{R} dans \mathbb{R} .

Soit $N \in \mathbb{N}$ fixé. On note E_N le sous-espace vectoriel de E formé des applications polynomiales de \mathbb{R} dans \mathbb{R} de degré inférieur ou égal à N.

14. Montrer que, pour tout $A \in E$, l'intégrale $\int_0^{+\infty} A(x) e^{-x} dx$ converge.

On considère l'application

$$\langle ., . \rangle : E \times E \longrightarrow \mathbb{R}, \quad (P, Q) \longmapsto \langle P, Q \rangle = \int_0^{+\infty} P(x)Q(x) e^{-x} dx.$$

15. Montrer que $\langle ., . \rangle$ est un produit scalaire sur E.

On considère, pour tout $P \in E$, l'application $T(P) : \mathbb{R} \longrightarrow \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}, \ T(P)(x) = xP''(x) - (x-1)P'(x).$$

- 16. Vérifier que T est un endomorphisme du \mathbb{R} -espace vectoriel E.
- 17. Montrer que, pour tout $P \in E$, l'application de \mathbb{R} dans $\mathbb{R} : x \longmapsto T(P)(x) e^{-x}$ est la dérivée de l'application de \mathbb{R} dans $\mathbb{R} : x \longmapsto xP'(x)e^{-x}$.
- **18.** En déduire, pour tout $(P,Q) \in E \times E$:

$$< T(P), Q> = -\int_0^{+\infty} x P'(x) Q'(x) e^{-x} dx.$$

- 19. Établir : $\forall (P,Q) \in E \times E$, $\langle T(P), Q \rangle = \langle P, T(Q) \rangle$.
- **20.** En utilisant le résultat de la question **13**, calculer, pour tout $n \in \mathbb{N}$, $T(L_n)$.
- **21.** En déduire que la famille $(L_0, ..., L_N)$ est orthogonale.
- 22. Montrer:

$$\forall P \in E_N, T(P) \in E_N.$$

On note T_N l'endomorphisme induit par T sur E_N , c'est-à-dire l'endomorphisme T_N de E_N défini par :

$$\forall P \in E_N, T_N(P) = T(P).$$

- **23.** Montrer que $(L_0, ..., L_N)$ est une base de E_N .
- **24.** Donner la matrice de T_N dans la base $(L_0, ..., L_N)$ de E_N .
- **25.** Est-ce que T_N est diagonalisable? Est-ce que T_N est bijectif?

Partie IV: Nature d'une série de maximums

On considère, pour tout $n \in \mathbb{N}^*$, l'application

$$g_n: [0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{x^n e^{-x}}{n!}.$$

26. Montrer que, pour tout $n \in \mathbb{N}^*$, g_n admet un maximum, noté M_n , et calculer M_n .

On note, pour tout $n \in \mathbb{N}^*$: $\mu_n = \sqrt{n} M_n$ et $a_n = \ln \mu_{n+1} - \ln \mu_n$.

- 27. Former le développement limité de a_n à l'ordre 2 lorsque l'entier n tend vers l'infini.
- **28.** En déduire la nature de la série $\sum_{n\geq 1} a_n$.
- **29.** Établir que la suite $(\mu_n)_{n\geqslant 1}$ converge et que sa limite est strictement positive.
- **30.** Quelle est la nature de la série $\sum_{n\geq 1} M_n$?

Partie V : Étude d'extremum local pour une fonction de deux variables réelles

On considère les applications

$$f:]0; +\infty[\longrightarrow \mathbb{R}, \quad x \longmapsto x e^{-x},$$

$$F:]0; +\infty[^2 \longrightarrow \mathbb{R}, \quad (x,y) \longmapsto f(x) + f(y) - f(x+y).$$

- **31.** Montrer que F est de classe C^2 sur l'ouvert $]0; +\infty[^2$ et exprimer, pour tout $(x,y) \in]0; +\infty[^2, les$ dérivées partielles premières $\frac{\partial F}{\partial x}(x,y)$ et $\frac{\partial F}{\partial y}(x,y)$ en fonction de f'(x), f'(y) et f'(x+y).
- **32.** Établir que, pour tout $a \in]0$; $+\infty[$, l'équation f'(x) = f'(a), d'inconnue $x \in]0$; $+\infty[$, admet au plus une solution distincte de a.
- 33. En déduire que, pour tout $(x,y) \in]0$; $+\infty[^2, (x,y)$ est un point critique de F si et seulement si :

$$x = y$$
 et $f'(x) = f'(2x)$.

- **34.** Montrer que F admet un point critique et un seul, noté (α, α) , et montrer que $1 < \alpha < 2$.
- **35.** Montrer: $f''(\alpha) < 0$ et $f''(2\alpha) > 0$.
- 36. Montrer que F admet un extremum local, et un seul. Déterminer la nature de cet extremum.

