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Exercice 1

Partie A : Etude de la suite (ix)nen
On s’intéresse 2 la suite récurrente (1) .y définiepar g =1 et
VReN, #nn = Une''¥,
1. a} Monirerque u, >0 pourtout ne N.
b) Donner le sens de variation de la suite (1) pen-
¢) Démonirer, en raisonnant par ['absurde, que (i) neny admet +oo comme limite.

2. Recopier et compléter le programme Python ci-dessous de sorte qu'il affiche le premier entier neN
tel que u, > 10°.

import numpy as np
uwsl

n =0

while ... :

Partie B : Etude de la fonction f
On considere la fonction f définie sur 10, +oof par: .
Vx>0, f(x) = xe'’*,
On note €y la courbe de f dans le plan muni d'un repére orthonormé.
3. Calculerles limites de fen +ooeten0.

4. Dresser le tableau de variation de [ sur 0, +ool.

5. Seitx>0.
-k
a) Justifier la convergence de la série ) % et calculer sa somme.
E>0
b) En déduire que:
i § 4oo xZ-»k
X) = x+14~ i,
f@ - kgz -
6. Soitx>1.
a) Etablir séparément les inégalités suivantes:
1 +00 xz—k
: A 46
g E
b) En déduire que:
| %) o <D< S
i o

7. Montrer que f(x) = x+1+ (1) au voisinage de +oo.
8. Représenter sur un méme dessin la courbe €7 et la droite d'équation y = x+ 1.
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- Partie C : Comportement asymptotique de la suite (it,)sen

1
9. a) Montrer que, pourtoutentier ke N, In{up.) ~In(ug) = oy

i1 1
b} En déduire que, pour tout entier e N*, In(u,) = ) %=
k=g “k

10. a) Alaide del'encadrement (x) montrer que, pour tout k€ N,

1 e
1 € Uy~ < 14—
U U
b) Soit ne N*, établir :
Iﬂwi 1 n—1
a+=3 -~ L up—-1< nte) —,
k=g Yk k=0 Yk

puis 1
1+ In(us) < a—n < 1+eln(uy).
In(u,)

Uy
b) En déduire un équivalent simple de u, lorsque n tend vers +co.

11. a) Justifierque: r:—lf-I-an =y,

n=l g
12. Déterminer un équivalent simple de -~ lorsque 1 tend vers +oo.
_ k=0 %k

Exercice 2

Les deux parties de cet exercice sont indépendantes I'une de Vautre.

Partie A : Réduction simultanée et spectre

Soit .#3(R) I'espace vectoriel des matrices carrées d’ordre trois a coefficients réels. On pose :

1609 6 11 1 0 0
I=}a 1 0}, jz{l 0 0f et K=j0 0 1},
0 0 1 1 60 ¢ 1 0

et on considére & = Vect(l, J, K) le sous-espace vectoriel de .44 (R) engendré par les matrices I, J et K.

1. Montrer que (I, J, K) est une base de &, en déduire la dimension de &.

2. Justifier sans calcul que les matrices J et K sont diagonalisables.

3. a) Exprimer la matrice J° comme un multiple de J.

b) En déduire que les valeurs propres de J appartiennent 4 'ensemble {~v/2,0, /2}.
vay (o
Onpose{f;m( 1 )etffgz( 1 }
1 ~1
4. a) Vérifier que U; et U; sont des vecteurs propres de J.

b} Déterminer un vecteur propre Us de J associé 4 la valeur propre —v/2.
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- 5. a) Justifier que (U, Us, [f3) est une base de .43 ; (R).
b} Donner une matrice inversible P de 45 (R) telle que :

2 0 0
P“lme[{} 0 0 )
0 0 —/2

6. a) Montrer que (U, U5, Us) est aussi une base de vecteurs propres de K.
b) Déterminer la matrice P KP.

7. Soit M une matrice de & de coordonnées (a, b, ¢} € R® dans la base (1, J, K).
a) Exprimer la matrice P~ MP sous la forme d'un tableau de nombres dépendant de g, b et c.
b) En déduire les valeurs propres de M.

8. On considere 'application linéaire s: & — R® définie par:

S(M) = slaf+bJ+cK) = (a+b\/§+c,a-c,a-b\/§+c)

pour toute matrice M = al + bJ + cK avec (a,b,c) e RS,
a) Donner la matrice S de s relativement 2 la base (7, J,K) de & et 4 la base canonique de R®.

b) Monirer que I'application linéaire s est bijective.

Partie B : Un algorithme de coloration des graphes

Soit n > 1 un entier, on considére un graphe non orienté G donné par sa matrice d'adjacence A € 4, (R).
On note ¥ = {5, ..., Sp-1} 'ensemble des sommets de G, dans les programmes informatiques on confondra
un sommet s; avec son numéro i. On dit que deux sommets sont voisins s'ils sont distincts et reliés par une
aréte.

Une coloration de G est une application ¢: & — N telle que ¢(s;) # c(s;) siles sommets s; et s; sont voisins,
Dans cette définition, N représente I'ensemble des « couleurs » disponibles, la coloration ¢ attribue & chague
sommet une « couleur » de sorte que deux sommets voisins soient de « couleurs » différentes.

Le graphe G admet la coloration triviale donnée par c(s;) = i pour tout i € [0,n - 1], il peut cependant
admettre une coloration nécessitant moins de n « couleurs ». Ainsi, le graphe 2 cing sommets ci-dessous
admet la coloration a trois « couleurs » définie par : ¢{sp) =0, c(s;) =1L, ¢(s2) =0, ¢(s3) = 1, e(s4) = 2.

Figure 1 : Un graphe d’ordre cing Figure 2 : Le graphe colorié avec trois « couleurs » (0, 1 et 2)

Les questions suivantes ont pour but de réaliser un programme Python qui renvoie une coloration d’un
graphe G quelconque, en essayant de minimiser le nombre de couleurs utilisées. On commence par rédiger
deux fonctions auxiliaires, « voisins » et «min_ext », qui serviront pour la fonction finale « coloration».
On suppose que la matrice d’adjacence A de G est définie 4 1'aide de la commande «np.array ».

9. Recopier et compléter le programme Python ci-dessous de maniére & ce qu'il définisse une fonction
«voisins » prenant en arguments la matrice d'adjacence A et un entier i € [0, n— 1], et renvoyant la
liste des sommets voisins de s;.
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10,

1.

12. Onnote A la matrice d’adjacence du graphe G représenté en

def voisins(hA,i):
n = len{A[lil)
v =1
for j in ramge(n):
if Ji= 4 amd ... 3
V.append(...)
return{V)

Rédiger en Python une fonction «min_ext » qui prend en argument une liste d’entiers naturels I,
et qui renvoie le plus petit entier naturel n'appartenant pas i L (par exemple, si L= [1,0,3,] alors la
commande «min_ext (L) » renvoie 2). On pourra transcrire en langage Python I'algorithme suivant :

% On affecte 4 une variable m la valeur 0. i
| Tant que m appartient 3 la liste L :
|On augmente de 1 la valeur de m.

On renvoie m.

i

ATaide des fonctions introduites précédemment on rédige maintenant une fonction « coloration»
prenant en argument la matrice d'adjacence A € .4, (R) d’'un graphe G, et renvoyant une coloration
de G sous la forme d'une liste d’entiers C = [Cy,...,Cp1], 011 G; désigne la « couleur» du sommet s;
pour tout i € [0, n—1].

On construit cette fonction selon I'algorithme « glouton » ci-dessous :

On affecte 3 la variable »n le nombre de sommets de G.
On affecte 2 la variable Cla liste [0, 1,...,n—1].

Pouriallantdelan~1:
On affecte a la variable « C_voisins » la liste des « coulewrs » des
sommets voising de s;
On affecte a C; le plus petit entier naturel qui n'est pas éiément de la
liste «C_voisings,

On renvoie la liste C,

Recopier et compléter la fonction « coloration » ci-dessous.

def coloration{A):
n = len(A{0]})
€= L
for i in range(l,n):
Cvoisins = [ ... for j in .., }
Clil = min ext(...)
return{C)

L.

figure 3 ci~contre.
a) Donner la liste obtenue en exécutant la commande
«coloration(A) ».

b} Le graphe G admet-il une coloration 2 trois couleurs?
Si oui, exhiber une telle coloration. Figure 3 : Le graphe G
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Exercice 3

Les parties B, C et D de cet exercice sont indépendantes les unes des autres.
Toutes les variables aléatoires sont supposées définies sur un méme espace probabilisé (Q, <, P).

Partie A : La variable aléatoire V

Seit U une variable aléatoire suivant la loi uniforme sur 10, 11, on note V la variable aléatoire définie par -

V=—.
VU

1. a) Justifier que V est & valeurs dans [1, +ool.
b} Montrer que la fonction de répartition de V est donnée par :

1
1-— six2=l,
Fy(x) = x*
g _six=1.

¢} En déduire que V est une variable aléatoire 2 densité, et donner une densité fy de V.

2. Déterminer si V admet une espérance et une variance, calculer leurs valeurs éventuelles.

La variable aléatoire V suit une loi de Pareto, les compagnies d’assurance utilisent cette loi pour modéliser
les montants des sinistres. Afin d’établir des prévisions, un actuaire étudie une suite {Vi)i»1 de variables
aléatoires mutuellement indépendantes et suivant la méme loi que V, la variable aléatoire Vi représente le
colit du i-iéme sinistre survenu 2 partir d'un instant donné.
Partie B : Loi du sinistre le plus cofiteux
Pour tout entier n > 1 on définit une variable aléatoire M, en posant :

Mn = max{vl,.-., Vn).
On note F, la fonction de répartition de M,,.

3. a) Montrer que F;, = (Fy)” pour tout entier n > 1.

b) Calculer la limite Rl_i_?m Fy(x) pourtout x€R.
) Justifier que Ia suite (Mp) > ne converge en loi vers aucune variable aléatoire.
On considére une variable aléatoire W dont la fonction répartition Fyy est définie par:

e*i’-’ six>0,

Fw(x) = ) .
0 six<.

M,
Pour tout entier 5 > 1, on note G, la fonction de répartition de la variable aléatoire -\72
n

4. a) Montrer que nl_i.,xgm Grlx) = e pourtoutx >0,
- ., My
b) Conclure quant 4 la convergence en loi de la suite | —=| .
nzi

v
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. Partie € : Musipulation d"une hase de donndes

La compagnie d’assurance tient a jour une table « sinistres» contenant des informations sur tous les
sinistres qu’elle a indemnisés entre les années 2000 et 2024. Les attributs (colonnes) de cette table sont

e id (de type INTEGER) : numéro d'identification du sinistre,

+ annee (de type INTEGER) : année durant laquelle est survenu le sinistre,

» mois (de type TEXT) : mois durant lequel est survenu le sinistre (on écrit le mois en minuscules),
s montant (de type INTEGER) : montant de indemnisation versée 2 'assuré (en euros).

5. Rédiger une requéte SQL permettant d'afficher :
a) lLaliste des montants d’'indemnisation des sinistres de 'année 2024,
b} Le mois et Vannée de tous les sinistres dont le montant d’indemnisation dépasse un million.

6. Le sinistre numéro 7652 s'est produit en avril 2025 et a été indemnisé & hauteur de 1540 euros.
Rédiger une requéte SQL ajoutant 2 Ia table « sinistre » une ligne correspondant 2 ce sinistre.

Partie D : Nombre de sinistres graves

On rappelle que (V});-; est une suite de variables aléatoires mutuellement indépendantes suivant toutes la
méme loi que V (voir partie A). On suppose que le nombre de sinistres se produisant au cours d’une année
est donné par une variable aléatoire N suivant une loi de Poisson de paramétre A > 0. On s'intéresse au
nombre de sinistres dont le colit dépasse un certain montant A > 1. On note ainsi T la variable aléatoire
égale au nombre d'éléments de {V},..., Viy} prenant une valeur supérieure 2 A, formellement :

Voe, Tw)=|iell,N)l; Vilw)> A},

ol la notation | - | désigne le cardinal.
7. Exprimer P(N = n) pour tout n € N(Q).
8. Quel est Pensemble T(() des valeurs prises par T'?

9. SoitneN".
a) Justifier que la loi conditionnelle de T sachant (N = r) estla loi binomiale % (n, % ).

b} Donner la valeur de Pyy=p,)(T = k) pour tout k € N, vous distinguerez les cas k < net k> n.
10. Calculer P(T = k) pour tout k € N, puis reconnaitre la loi de T.

11. Enmoyenne, combien de sinistres avec un cofit supérieur 3 A surviennent en un an?

{ Fin de I'énoncé |
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